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ABSTRACT

The asymmetry in current density along the periphery of

cylindrical scattering obstacles of both finite and infinite length
illuminated by a plane wave electromagnetic field is discussed.

In the Appendix the same problem for a spherical scatterer is
is considered.
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MISSILE CIRCUMFERENTIAL CURRENT
DENSITY FOR PLANE WAVE

N. ELECTROMAGNETIC FIELD ILLUMINATION

Introduction

The study of shadowing of plane wave electromagnetic fields by missiles is of

importance because RF leakage into a missile through holes and slots in the wall and

the RF pickup of cables furrowed into the skin leading to interior circuitry depends

on the amplitude and the variation of current density along the circumference of the

scattering obstacle. Clearly the azimuthal orientation of the missile with respect

to the incident field has a bearing on the RF receiving characteristics of the slots

and cables, if indeed electromagnetic field shadowing is significant.' EI

One topic discussed briefly in this memorandum is a theory for shadowing by

tubular cylinders of arbitrary dimensions developed by Kao.2 -4 rAs a practical mat-

ter, the coupled integral equations derived by him cannot readily be solved for very

long cylinders because of the limited number of storage locations in a computer.

To circumvent this, the author presents a theory for shadowing by a cylinder of

infinite length. In the entire discussion of both finite and infinite tubes, it is assumed

that the electric field is polarized parallel to the axis of the cylinder. This is the

case of dominate interest in the field of RF hazards to ordnance. But this specific

polarization is an unnecessary restriction. The angle the incident field makes with

the axis of the cylinder may be arbitrary. In particular, the ma mayb

polarized parallel to the conductor. 1
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Discussion of the Shadowing Properties
of the Finite Length Hollow Cylinder

Consider a perfectly conducting thin-wall tubular cylinder of complete gener-

ality in both length and radius, as portrayed by Figure 1. The axis of the cylinder

coincides with the z-axis of a cylindrical coordinate system (r 9, z). The tube

extends over the interval -h < z < h and is of radius a. The incident electric field

E is directed parallel to the axis of the cylinder and arrives at the angle 9 =

1' z
radians. This orientation of the electric field, which is termed E polarization, is

the one of primary interest in the study of missile shadowing.

I Z

iz

B=w .,e Z=h,8O= Figure 1.

t Finite Tubular Cylinder Illuminated

J6(6.-) by Electric Field E. Jt(9, z) and
Jt(9 z) are the coexistent total

E ,( g Z) current densitiesI
Z=_ h

0l

For E polarization (as well as for H polarization, i. e., H parallel to the
t ~z

z-axis), an axial current density Jz(9, z) and a transverse current density J (9, z)

are induced. These currents are coupled. The superscript t is used to denote the

total current density, i.e., the sum of the currents on the inside and outside sur-

faces of the tubular cylinder. As will be made plain later for certain values of

tube length and electrical radius koa, where k° = 2ir/A 0 the inside currents are

negligibly small. Under these circumstances the error is not great to consider

the cylinder capped at the ends by metal surfaces as is the situation in practical

missiles.
6,
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( Both components of total current density Jt(0, z) and J JO, z) exist simul-

taneously on a tube of finite length when excited by E 2 ; only the former exists on

a tube that is infinitely long. The physical explanation of this fact is not trivial.

Along a tube of finite length or any finite obstacle, standing waves of current

and charge obtain. The current and charge are of even and odd symmetry, re-

spectively. Maximum charge concentrations occur at the ends of the tube but there

is a distribution of charges all along the tube. The illumination of the tube is asym-

metrical, so that different densities of charge exist at different values of 9. These

nonuniform concentrations exert forces that cause the charge to flow in the 0 direc-

tion around the tube, bringing into existence Jt (9, z). The maximum value of this
t tcomponent of total current density is J 0(9, h). The amplitude of J (0, z) decreases

as one recedes from the ends of the tube toward its center. At that point J t( 0)
t 0

0 for reasons of symmetry. Clearly J0(9, z) is oppositely directed in the regions

0 < z _ h and -h < z < 0.

For an infinite cylinder E i gives rise to axial progressive or traveling waveszof current and charge. There can be no axial standing wave of charge or current

(because there are no discontinuities (einds). Accordingly, there is no source for the

current density Jt(9, z) and this component of current density is not excited with the
0

indicated E polarization of the incident field. Evidently, the total current exists
Zsolely on the outside surface of an infinitely long cylinder.

Circumferential symmetry of the current density cannot exist on the periphery

of either a finite or infinite tubular conductor because the excitation of the cylinder

provided by an incident plain wave is asymmetrical. However, there would be no

shadowing effect if one could arrange illumination in the form of a cylindrical wave

converging on the obstacle.

In general, one is interested in comparing Jt (, z) with J (9, z) and jt(,z)
zzwith J (0, z). This provides a measure of the shadowing of the missile. Remember

that the cylinder is first illuminated in the region 9 t-i ; a shadow region may occur

at several values of 9 on the surface of the same cylinder (depending on the value of

k a) and not at 0 = 0 radians. It is very important to note that shadowing for a cylin-

der of finite length is a function of z; i.e., different values of shadowing obtain for

z 0 compared to z- th.

7* ,.



Kao2 6 has done some brilliant work in the field of scattering from a thin 0

wall tubular cylinder of completely arbitrary dimensions (lengtki and radius), for

E- and H-polarization. Some of his results for E-polarization are shown in

Figures 2 through 4. Curves for the shadowing of an infinite cylinder are also

given. Evidently the ratio I Jt(0, z) /1Jt (r z) is smaller for infinite cylinder
z /z

shadowing as compared to finite cylinder shadowing for the range of values of k h0

and k a considered by Kao. In this sense infinite cylinder theory bounds the prob-

lem for 0 = 1r, 0.

Tables of data on shadowing by finite length tubes appear in Reference 3, and

Reference 2 contains a program in Fortran 4 for the IBM 360/65 computer permitting

further computations.

From the Kao formulation of the problem, it is possible to separate J z(9, z)

and J (0, z) into inside and outside currents. For the orientation of the field

assumed the longest wavelength of the mode that can exist in the tube corresponds

to the TM01 mode. Thus, if k a < 2. 407, there is essentially no current in the

interior of the tube, and J (9, z) and J9 (9, z) are outside currents. This presup- 0.
poses that the inequality h > 5a is satisfied.

If the incident electric field is tilted with respect to the axis of the tube or

H-polarization is under consideration, TE modes may be excited. For cut-off of

the TE mode, k a< 1.843.

On Estimating the Degree of Nonuniformity of the
Current Density and the Total Electric Field
About the Periphery of an Infinite Cylinder

for Plane-Wave Illumination

The largest cylinders investigated numerically by Kao3 have an electrical
length k h of 1. 5n, i.e., h = 0.75Xo, and electrical radii of k a =1.0, 2.0. and

3.0. The following simple analysis, based on infinite cylinder theory for

8
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E-polarization, may be of utilitarian value in estimating shadowing effects for mis-

ooj
sile whnk0h> 5n / >1

The total field in the z-direction in the vicinity of an infinite cylindrical scat-
terer illuminated at 9 = r by a plane wave is 7
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[J(k r)H (2) ka) - Jn(koa)H( 2 )(k o r)]ejn.

Et (r, 0) E 0n [in o n o (2) (n)

Z 0E- H (ka
00 n 0

Since interest centers in the case (k r)2 << 1, i.e., in the low-frequency

region of the radio spectrum, it is sufficient to retain only three terms in the above

series.

Using the relations

j J (Z) =(1)n Jn(Z)

(2)
(2 n (2)

H 2 (Z) ) H (Z))
-n = ( (2)

Equation (1) may be written

J (k r)H (2) (k a)- J (k a)H (2) (k r)]

E z(r, 9) E0(2)
H0(k 0a)

(3)

S (2) (2)1
-J1 (k 0 r)H 1 (k 0 a)- J (k 0 a)H 1 (k0 r)j (o)

-j2 H(2)(oacoe

H M(k a)

For small arguments (k r)2 << 1 this expression reduces to

E z r F) (r 2) (4)2 2
+ j " In ((4)a

where

12
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Ck r[l - in J2 cos 0

F(r, e) 1- 2 n r (5)
-n In

iT a

In Equations (4) and (5), Y = 1.781 so that in Y = c 0. 5772 ... is Euler's

constant. Use was made of the small argument form of the Bessel functions:

J(z) 1

JlI(z) -z/2

(6)

H(2) .+j21i /2N

H ( z)-= z + j-2

Note that the function F(r, 0) is. the factor by which the principal rotationally sym-

metrical part of the resultant field near the cylinder must be multiplied in order to

obtain the first-order correction for small departures from rotational symmetry.

Numerical Example

F(O) and F(0) are to be computed 0.5 cm away from the skin of

the missile. Let f = 8.485 MHz anda= 53.377 cm. It follows that
X = 35. 357 m, and r = 53.877 cm. Then k r = 9.574x 10-2,

0 3
(2/v) in (r/a) = 5. 9634 x 10 , [1 +j(21n) In (2/Yk a)] = 1 + jl.5733,

2 2 -20
and (1 - a /r 2 ) = 1.8476 x 10 . (In evaluating In (r/a) it was found

convenient to use the approximation In (1 + z) = z.) Substituting these

values into (5), IF(o)I = 0. C441 and IF(-)I 1.3781. Hence the

shadowing ratio is -- = 0. 6125 for the total electric field 0.5 cm

away from the surface of the cylinder.

x
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The current density JV(a, 9) on the cylinder is given by0z

J t(a, 9) =Ht (a., 9). (7)
z 9

Now,

Vx E -jwpH , (8)

so that

t r,9

J (a, 9) =1 zE (r,99z jC011 49r lr=a

Applying (9) to (1) it is found that

Jt(2E Co .- n jn9 10
z n nk 0a EjjH (2)(ka

fl-oo n 0

In deriving (10) the Wronskian relation

J n(z)Yn(z) - Y n(z)j (z) = 2/rz (1)

was employed. Note that this formula is valid for all z; in particular for z =k 0a.

Obsrve totat- J (u) = ,(u) du and- Y (u) = Y I(u) -u The substitutiondx n n dx dx n n dx'
c= k was also made in obtaining (10). Again, for (k a)2 <( 1, (10) may be

0 0 0
written

t 2E 012 cos ( t k a ( )H )( 2

0) 0rk [H0(k0 a) - () ] 2

14



Using (6) in (12) yields

Jt (a 9) = G(a 6) (13)
0

where

G(a, 9) = - ka +j 2 InL cos 0. (14)

Numerical Example

For the practical situation previously described one need only

determine ak a to complete the problem. This factor has the value0

,7k a= 0.2980. It follows that IG(0)= 0.8441 and IG()I 1.3781.

Hence G 0.6125.[G(7)[

On comparing the total field and current density shadowing ratios, it is ob-

served that they are the same. However, as r becomes larger, less perturbation

of El by the presence of the scattering obstacle should be expected, i. e., E t - E i .

z z z
Shadowing probably is best defined in terms of the current density on the periphery

of the missile, because it is this current that flows into holes and slots that may

exist in the missile skin.

Conclusion and Desiderata

Kao has developed a theory for determining the current density inside and

outside of a tubular cylinder of arbitrary dimensions for both E- and H-polarization

and has written a computer program for studying such scattering obstacles numeri-

cally. It has been pointed out that if k a < 1. 843 the tube is below cut-off for both

TE and TM modes, and the total current density is essentially the current density

on the outside surface of the tube. In such cases, the tube may be considered as

15



capped at the ends. The Kao program fails for very long tubes because of computer

storage capacity. When koh >> 1 and h/a >> 1, the method proposed by the author

for investigating shadowing, based on infinite cylinder theory, will yield the upper

bound for shadowing in finite length structures (9 = r', 0). Accordingly, it may be a

satisfactory approximation to base all missile shadowing studies on (14) if the fre-

quency is sufficiently low. This simple formula is amenable to slide-rule evalua-

tion for obtaining the current density on the surface of the cylinder at various azi-

muth angles 9.

Evidently no information on the value of Ij t(0, z)/J (f, z) I with changes in

z is available nor are any data on the values of it(0, z)/(r, z) 1. The latter cur-

rents do not exist on infinite structures for E-polarization but could be obtained for

H-polarization with no z-dependence.

2.

It appears that, if the Kao computer program is rewritten for use on the

computer available, missile shadowing can be investigated completely. But since

interest centers on missiles having radii small compared to the wavelength, it may

be that the problem of shadowing of an incident plane wave electromagnetic field by

a missile simply fades away.

* 1. 0
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APPENDIX

SHADOWING BY PERFECTLY CONDUCTING SPHERES

Perhaps the prolate spheroid more nearly conforms to the shape of a missile

than any other body of finite dimensions. The spheroid has the advantage over the

tubular cylinder of finite length in that its ends are closed. TaylorB has obtained

exactly the total axial current distribution along a prolate spheroidal antenna. This

work is of great importance in the field of radio frequency hazards to ordnance

inasmuch as RF leakage into a missile containing an access door is related to the

total surface current.

Unfortunately, it appears a formidable undertaking to determine the current

densities on the surface of a spheroid, but this can be accomplished for the spe-

cialized spheroid -- a sphere. The author now undertakes to investigate shadow-

ing by spheres for plane wave illumination for the case k a < < 1. This inequality
0

implies a sphere of small radius, or long wavelength of the incident field.

The current densities on a perfectly conducting sphere for a plane wave

propagating in the z-direction with electric field parallel to the x-axis (Figure 5)
9

are

jEO cos0 _n sinQP (Cos9) PI(Cos 9) 1
[r0iOn+1 n + ____n_(A_1)ka n-1 n(n+ ah(2)(k a)] sin 9 koah(2) (kaJ A)

n= o o 0n 0

AE sin 0 ~-n P I (Cos ) j sin 0P (c os 0)

C "ka n(n + [ + ... (ka)
n0 = 0 n a 0n 0

17



Direction of Propagation

Figure 5. Geometry of the Problem for Determining the Current Densities
J and J 0Generated by Plane-Wave Illumination of a Perfectly

cionductinig Sphere

In these expressions, which are exact for any value of k 0a, E 0is the ampli-

tude of the incident field. The objective is to determine approximately J. and J 0
for n = 1. The result obtained should be useful wvhen k a .. < 1.

0

To evaluate (Al) and (A2) for n an arbitrary positive integer, the following

relations are needed:

PI (x) 0 (A3)

PI (x) - - x2)1/ (A4)

P3'1 (x) K [(2n + l)P I(x) - (n + O)P I(X] (A5)

P'() -nxP"')(x) + (n + OP ,x(A6)

18
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h ( n+l -1 -jz (n + k)! -k(A7)
n = e k!r(n - k +

k=o

(2)' ~(2) z n__ (2)
h (z) h (Z) - h (Z) (A8)

nI I n

For example, since P (x) and P (x) are known, P (x) may be found from
i 0 2

(A5), and P2 (x) from (A6). From (A) it is determined that

h(2)(z) = je'JZ/z (A9)
0

and

h(2)(z) =- 1(1)e-jz (A1O)

With (A9) and (A10) it may prove convenient to employ

h(2)l(z) + h (z) 2n + 1)z h (z) (Ali)
n-1 ni n

to generate the spherical Hankel functions of order n.

In the present instance x cos 9 and z = k a. It is found using (A3) to (A8)

that

I'
P I(cos 9) = -sin 9

PI(Cos 0) cot 0

(~2 ~) e0k (A12)
0 

a) 
a

0

[kah(2)(ka)] e je k0 a + -e ka)a )A

19
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Also, )

-n 2+ 1  
An(n + 1) T2 (A13)

2Since k a < < 1 the only terms that count are the ones involving (koa) in the
0 -jk-a

denominator. Also, one sets e 1. With these substitutions, (Al) and (A2)

become

•3 E
0 2C 0 - oCos 0 (A14)

j -L E sin 0(jk a- cos 9)
0 2C o 0o

o sin 0(Josa -(Aos5

0

provided k0 a << 1. 0
Note that J, = 0 when 0 = ?r/2 as it should. Observe also that J is analogous

to J (0, z) for the cylinder. Both expressions are essentially independent of k a
z 0

when k a < 1.
0

Evidently, it is no marvel that two components of current density exist along

cylinders of finite length and also on the surface of spheres.

2I

I

p
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